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Abstract. Under the scenario in which, within a traffic flow, each vehicle is controlled by adaptive cruise
control (ACC), and the macroscopic one-vehicle probability distribution function fits the Paveri-Fontana
hypothesis, a set of reduced Paveri-Fontana equations considering the ACC effect is derived. With the set,
by maximizing the specially defined informational entropy deviating from a certain reference homogeneous
steady state, the Navier-Stokes-like equations considering ACC are introduced. For a homogeneous steady
traffic flow in a single circular lane, when the steady velocity or density is perturbed along the lane,
numerical simulations indicate that ACC-controlled vehicles require less time for re-equilibration than
manually driven vehicles. The re-equilibrated steady densities for ACC and manually driven traffic flows
are all close to the original values; the same is true for the re-equilibrated steady velocity for manually
driven traffic flows. For ACC traffic flows, the re-equilibrated steady velocity may be higher or lower than
the original value, depending upon a parameter ω (introduced to solve the distribution function of the
reference steady state), and the headway time (introduced in ACC models). Also, the simulations indicate
that only an appropriate parameter set can ensure the performance of ACC; otherwise, ACC may result
in low traffic running efficiency, although traffic flow stability becomes better.

PACS. 45.70.Vn Granular models of complex systems; traffic flow – 02.50.-r Probability theory, stochastic
processes, and statistics

1 Introduction

As traffic conditions drastically deteriorate, the issues re-
garding traffic flows have attracted the enthusiasm of
many physicis and engineers. Traffic models play an im-
portant role within today’s traffic research. They have
been successfully used in many traffic applications, such
as traffic flow prediction, incident detection, and traffic
control [2]. Based on the level of detail, traffic flow models
are categorized into microscopic, mesoscopic, and macro-
scopic models [8,14]. The models of different detail levels
are not isolated; links exist between them [1,7,11]. For
instance, a connection between a microscopic follow-the-
leader model and a semi-discretization of a macroscopic
continuum model has been established, based on a conser-
vation law [1]. Also, a macroscopic continuum model has
been obtained from microscopic car following models [6].

These traffic flow models are founded upon differ-
ent backgrounds, such as the Maxwell model [15] or
gas-kinetic theory [7,23,24]. Some are based on cellu-
lar automata, which often take real-time traffic informa-
tion (provided by modern intelligent transportation sys-
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tems) [13,26] into account. The many other approaches
include: all kinds of car-following models [10,12,13,21,22],
optimal velocity models [3,16], the continuum traffic
model [25], the full velocity and acceleration difference
model [27] and some new models [17,19]. With the devel-
opment of traffic dynamic analysis, some properties, such
as stability [5] and bifurcation [9,18] have also been stud-
ied.

Of all these models, the set of Navier-Stokes-like equa-
tions, coming from fluid- and gas- kinetic analysis [5,7,8],
is the appropriate for the study of traffic flows. In this
model, a single vehicle is seen as a gas particle, the
Boltzman-like term is used to describe the interactions
among vehicles macrocosmically, and the time derivative
of the instantaneous velocity is assumed to be the quotient
of the difference between the instantaneous velocity and
the desired velocity and a constant relaxation time [24],
or a function of vehicle density [7]. However, in practice,
contrary to gas dynamics, there are not enough cars on a
road to justify a Boltzmann approximation, and cars that
only have positive velocities are different from the parti-
cles in gas dynamics. Furthermore, the role of diffusion is
not clear in traffic flows.
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For adaptive cruise control traffic flows, the strategy
regulating instantaneous velocity is controlled by ACC;
the assumption of relaxing the instantaneous velocity with
a constant time [7,24] is not appropriate. In a more real-
istic scenario, the relaxation of the instantaneous velocity
is not only dependent upon the difference between the de-
sired velocity and the instantaneous velocity, but also on
the difference between the instantaneous velocity of a ve-
hicle and that of the one preceding it. Furthermore, the
desired velocity is variable, and relies on the vehicle den-
sity values in the vicinity of the considered vehicle. Tak-
ing these considerations and the macroscopic traffic flow
model given in [24] into account, this paper derives a set of
improved Navier-Stokes-like equations applicable to ACC
traffic flows.

The rest of this paper is organized as follows: in
Section 2, a new expression of ACC dynamics is derived.
Section 3 is devoted to constructing the Paveri-Fontana
equation considering ACC. The improved Navier-Stokes
equations are derived in Section 4. Some numerical simu-
lations and discussions, and concluding remarks, are given
in Sections 5 and 6, respectively.

2 A new expression of ACC dynamics

The aim of ACC is to maintain the headway between a
vehicle and the one that is preceding it [4]. Modern tech-
nologies provide many ways to obtain the headway accu-
rately, such as radar, image sequence processing, etc. The
application of the obtained headway into the relaxation
of instantaneous velocity can improve the stability of the
traffic flow by eliminating dangerous interactions among
vehicles. The kernel of ACC is the algorithm controlling
the headway. Usually, the constant-headway time policy
is favorable for its stable quality [4].

In a queue of N vehicles, where the head one is num-
bered n = 0, and the tail one is n = N − 1, the adaptive
cruise control system is described by [4]:

τ
dνn(t)

dt
+ νn(t) =

1
hd

(∆xn(t) − ln) + β∆νn(t), (1)

where τ models the vehicle response time, which is depen-
dent upon the vehicle performance and the ACC system
etc. (τ is typically 0.5−1.0 s). νn(t) is the instantaneous
velocity of the nth vehicle. hd is the headway time, for a
constant-time headway policy, it is a constant, generally
about 1 s. Let

∆xn(t) = xn−1(t) − xn(t) and ∆νn(t) = νn−1 − νn(t)
(2)

be the distance and velocity differences between a vehicle
and that preceding it. ln is the length of the nth vehicle. β
is often a constant, dependent upon τ and hd. The desired
division between the (n− 1)th vehicle and the nth vehicle
is given by ∆xd

n(t) = hdνn(t) + ln, so the desired velocity
for vehicle n can be taken as follows

wn(t) =
1
hd

[∆xn(t) − ln]. (3)

In practice, in a single unidirectional lane, the vehicle po-
sition is completely described by x. At time t, assume
the nth vehicle is at x. Let h(x, t), ν(x, t), and w(x, t) re-
spectively denote the sum of the headway and the vehicle
length ln, νn(t), and wn(t). Under these circumstances,
equation (1) can be written as

τ
dν(x, t)

dt
+ ν(x, t) =

1
hd

(h(x, t) − l(x, t))

+ β[ν(x − h(x, t), t) − ν(x, t)]. (4)

From position x−h(x, t) to x, there exists only one vehicle,
so

ρ(x, t) = 1/h(x, t) (5)

is the vehicle density at position x and time t. Write (3)
into

w(x, t) = (h(x, t) − l(x, t))/hd. (6)

Actually [ν(x − h(x, t), t) − ν(x, t)]/h(x, t) means the dif-
ference quotient of the instantaneous velocity along x. Let

∂

∂x
ν(x, t) =

ν(x − h(x, t), t) − ν(x, t)
h(x, t)

. (7)

From equations (4)−(7), we have

ρ(x, t)
dν(x, t)

dt
=

ρ(x, t)[w(x, t) − ν(x, t)]
τ

+
β

τ

∂ν(x, t)
∂x

.

(8)
Equation (8) is the reformed kernel control algorithm of
ACC, and has typical realistic meaning: Usually, when the
instantaneous velocity exceeds the desired velocity, that is
when ν(x, t)−w(x, t) > 0, the driver will slow the vehicle
down. This factor is involved in (8) as ρ(x, t)[w(x, t) −
ν(x, t)] < 0 reduces ρ(x, t)∂ν(x, t)/∂t. On the other hand,
∂ν(x, t)/∂x > 0 implies that the preceding vehicle has
a higher velocity. In this case, the vehicle should speed
up. Equation (8) clearly confirms this. Equation (3) in
reference [24] shows the following relaxation policy

∂ν(x, t)/∂t = [w(x, t)− ν(x, t)]/τ and ∂w(x, t)/∂t = 0,
(9)

where τ is a fixed relaxation time. Compared with equa-
tion (9), equation (8) seems to be more compatible with
realistic cases, as it considers the instantaneous velocity
difference between the vehicle and that preceding it, and
that in different cases the desired velocity changes.

3 The Paveri-Fontana equations considering
ACC Dynamics

For a single unidirectional vehicle lane, the Paveri-Fontana
model [20] abstracts the traffic state by the one-vehicle dis-
tribution function g(x, c, b, t), such that g(x, c, b, t)dxdcdb
is the count of the vehicles at time t, in the road interval
between x and x+dx and their instantaneous and desired
velocities are between c and c + dc, and b and b + db, re-
spectively. The function g(x, c, b, t) satisfies the following
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gas-kinetic traffic equation [24]

∂g(x, c, b, t)
∂t

+ c
∂g(x, c, b, t)

∂x
+

∂

∂c

⎧
⎪⎩g(x, c, b, t)

dc

dt

⎫
⎪⎭

+
∂

∂b

⎧
⎪⎩g(x, c, b, t)

db

dt

⎫
⎪⎭ = f(x, c, t)

∫ ∞

c

(1 − p)(c′ − c)g(x, c′, b, t)dc′

− g(x, c, b, t)
∫ c

0

(1 − p)(c − c′)f(x, c′, t)dc′ (10)

where p is the probability that a slower vehicle can be
immediately overtaken, f(x, c, t) =

∫ ∞
0

g(x, c, b, t)db is the
one-vehicle instantaneous velocity distribution function at
position x and time t. The right-hand side of equation (10)
is the macroscopical collision term, derived from some pre-
viously described assumptions [7,24]. The main shortcom-
ing of the Paveri-Fontana model is that it is very diffi-
cult to obtain the analytical solution when the interaction
process can not be neglected. To overcome this shortage,
under the assumptions

lim
b→0

g(x, c, b, t) = 0 and lim
b→∞

g(x, c, b, t) = 0, (11)

a reduced Paveri-Fontana equation (12) is obtained by
integrating the two sides of equation (10) with the desired
velocity b

∂f(x, c, t)
∂t

+ c
∂f(x, c, t)

∂x
+

∂

∂c

⎧
⎪⎩

∫ ∞

0

g(x, c, b, t)
dc

dt
db

⎫
⎪⎭ =

f(x, c, t)
∫ ∞

0

(1 − p)(c′ − c)f(x, c′, t)dc′. (12)

Assuming the macroscopic statistic distribution of the
traffic follow constituted by ACC vehicles fits g(x, ν, w, t),
by equation (8) we take

dc(x, t)
dt

=
b(x, t) − c(x, t)

τ
+

β

τp(x, t)
∂c(x, t)

∂x
, (13)

which is an assumption imposed on model (12), as the
vehicles are presumed to be microscopically controlled by
ACC. Insertion of the above equation into (12) yields

∂f(x, c, t)
∂t

+ c
∂f(x, c, t)

∂x
+

∂

∂c

⎧
⎪⎪⎩

b̄(x, c, t) − c

τ
f(x, c, t)

⎫
⎪⎪⎭

+
∂

∂c

⎧
⎪⎪⎩f(x, c, t)

β

τp(x, t)
∂c

∂x

⎫
⎪⎪⎭ =

f(x, c, t)
∫ ∞

0

(1 − p)(c′ − c)f(x, c′, t)dc′ (14)

where
b̄(x, c, t) =

∫ ∞

0

b
g(x, c, b, t)
f(x, c, t)

db

is the average desired velocity for ACC vehicles passing x,
at time t, with an instantaneous velocity c. Equation (14)
is the reduced Paveri-Fontana equation for the traffic flow
considering ACC.

4 The improved Navier-Stokes-like equations

Assuming

lim
c→0

f(x, c, t) = 0 and lim
c→∞ f(x, c, t) = 0, (15)

denoting

c̄(x, t) =
∫ ∞

0

c
f(x, c, t)
p(x, t)

dc, b̄(x, t) =
∫ ∞

0

b(x, c, t)
f(x, c, t)
p(x, t)

dc,

and noticing that

ρ(x, t) =
∫ ∞

0

(x, c, t)dc, (16)

integration of equation (14) with c from 0 to ∞ yields the
continuity equation.

∂ρ(x, t)
∂t

+
∂

∂x
(ρ(x, t)c̄(x, t)) = 0. (17)

Using (15) and (16), with the two sides of equation (14)
multiplying and integrating with c, it follows that

ρ(x, t)
⎧
⎪⎪⎩

∂c̄(x, t)
∂t

+ c̄(x, t)
∂c̄(x, t)

∂x

⎫
⎪⎪⎭ +

∂

∂x
p(x, t) =

ρ(x, t)
τ

[

b̄(x, t) − c̄(x, t)
]

+
β

τ

∂

∂x
c̄(x, t)

− (1 − p)ρ(x, t)p(x, t), (18)

where

p(x, t) =
∫ ∞

0

(c − c̄(x, t))2f(x, c, t)dν = ρ(x, t)Θ(x, t)

(19)
is the traffic pressure, Θ(x, t) denotes the variance of
the instantaneous velocity c. By the Chapman-Enskog
method, the distribution function f(x, c, t) can be writ-
ten as

f(x, c, t) = f0(x, c, t) + f1(x, c, t) + . . . (20)

where f i(x, c, t) denotes the successive approximations for
the distribution function. As has been done in previous
literature [24], we assume the distribution functions corre-
sponding to a homogeneous steady state not to be depen-
dent upon time t and position x, and denote the macro-
scopic quantities corresponding to this state as

ρe =
∫ ∞

0

fe(c)dc, ρece =
∫ ∞

0

cfe(c)dc. (21)

With this steady state, as f(x, c, t) is assumed to be inde-
pendent of x and t, becomes fe(c), leading to ∂

∂tfe(c) =
∂
∂xfe(c) = 0, the reduced Paveri-Fontana model (14) be-
comes

∂

∂c

⎧
⎪⎪⎩fe(c)

b̄(c) − c

τ

⎫
⎪⎪⎭ = fe(c)ρe(1 − p)(ce − c). (22)
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Based upon equation (6), the following can be written

b̄(c) =
1
hd

⎧
⎪⎩

1
ρe

− D

⎫
⎪⎭ , (23)

where D is a constant length that is a little longer than
the maximal vehicle length (often 7 m) [4]. This gives

∂

∂c

⎧
⎪⎩fe(c)

1 − ρeD − ρehdc

ρehdτ

⎫
⎪⎭ = fe(c)ρe(1 − p)(ce − c).

(24)
In equation (24), fe(c) can be written as

fe(c) =
α

Γ (x)
ρe

ce

⎧
⎪⎩

αc

ce

⎫
⎪⎭

α−1

exp
⎧
⎪⎩−αc

ce

⎫
⎪⎭ ,

α =
τρe(1 − p)ce

ω/hd − 1
(25)

under the assumption

1 − ρeD = ρeωc, ω > hd, (26)

where α is a dimensionless constant characterizing the ho-
mogeneous steady state. Equation (26) is equivalent to
he − D = ωc, he = 1/ρe, is the headway within the refer-
ence homogeneous steady state, ω is the time the vehicle
needs to go through the headway he − D with velocity
c. ω > hd means ρe is relatively small. In a traffic jam,
the actual velocity is small, and a very large ω can satisfy
equation (26). Even equation (26) will fail when c = 0.
It is worth noting that equation (26) can be replaced by
others, it is not unique but is mathematically sound.

In order to calculate f1(x, c, t), the mean free
interaction time τ0 is needed [7,24]. When taking
f(x, c, t) = f0(x, c, t) + f1(x, c, t), the traffic pressure is
calculated as

P =
ρ(x, t)c̄2(x, t)

α

⎧
⎪⎪⎩1 − τ∗ ∂c̄(x, t)

∂x

⎫
⎪⎪⎭ , (27)

τ∗ = 2τ0(1 + α)/α.

Insertion of equation (27) into equation (18) gives

∂c̄(x, t)
∂t

= − c̄2(x, t)
αρ(x, t)

[
2ρ(x, t)
c̄(x, t)

∂c̄(x, t)
∂x

+
∂ρ(x, t)

∂x

+ (1 − p)ρ2(x, t)
] ⎧

⎪⎪⎩1 − τ∗ ∂c̄(x, t)
∂x

⎫
⎪⎪⎭

+
c̄2(x, t)

α
τ∗ ∂2c̄(x, t)

∂x2
+

b̄(x, t) − c̄(x, t)
τ

+
β

τρ(x, t)
∂

∂x
c̄(x, t) − c̄(x, t)

∂c̄(x, t)
∂x

. (28)

Equations (17) and (28) constitute the new Navier-Stokes-
like equation set considering the adaptive cruise control
effect. Compared to the ordinary Navier-Stokes-like equa-
tion set (Eqs. (9) and (37) in [24]), β

τρ(x,t)
∂
∂x c̄(x, t) is a

new term resulting from the ACC effect.

5 Numerical simulations and discussions

From [24], the probability of passing takes the explicit
form

p = 1 − ρ

ρ̂
, (29)

where ρ̂ is the maximum vehicular density. There are many
ways to specify β. Using

β =
τ

hd
(30)

eliminates the difference between c(x, t) and b(x, t) with
time evolution [4]. Let the desired velocity be controlled
by ACC

b̄(x, t) =
1
hd

[
1

ρ(x, t)
− D

]

. (31)

Insertion of equations (27), (29)−(31) into equation (28)
gives

∂c̄(x, t)
∂t

=
2τ0(1 + α)c̄2(x, t)

α2

∂2c̄(x, t)
∂x2

− c̄2(x, t)
α

×
[

2
c̄(x, t)

∂c̄(x, t)
∂x

+
1

ρ(x, t)
∂ρ(x, t)

∂x
+

ρ2(x, t)
ρ̂

]

×
⎧
⎪⎪⎩1 − 2τ0

1 + α

α

∂c̄(x, t)
∂x

⎫
⎪⎪⎭ (32)

+
1
τ

[
1
hd

⎧
⎪⎪⎩

1
ρ(x, t)

− D

⎫
⎪⎪⎭− c̄(x, t)

]

+
1

hdρ(x, t)
∂c̄(x, t)

∂x
− c̄(x, t)

∂c̄(x, t)
∂x

(33)

where

α =
hdτρ2

ece

(ω − hd)ρ̂
(34)

resulted from equations (25) and (29). From equation (33),
once the headway time hd, response time τ of ACC vehi-
cles, ρe, ce, ρ̂ and are given, we know α and ω are inter-
dependent.

Let L = 15 km, ρ̂ = 140 vehicles/ km, D =7.0 m, and
consider a homogeneous steady traffic flow described by
ρe = 35 vehicles/km, ce = 75 km/h. The pending param-
eters about the ordinary Navier-Stokes-like equations [24]
are given as α = 100 and the mean interaction time τ0 =
300 s. The values in our model are vehicle response time
τ = 0.6 s, ACC headway time hd = 1 s, and the param-
eters introduced in (26) ω = 1.5 s and in (27) τ0 = 60 s
(commonly, the interaction time of an ACC traffic flow is
less than that of the traffic flow without ACC). The initial
and boundary conditions are uniformly provided as

ρ(x, 0) = ρe, V (x, 0) = Ve + 5 sin(2πx/L),
ρ(0, t) = ρ(L, t), V (0, t) = V (L, t),
∂

∂x
V (0, t) =

∂

∂x
V (L, t). (35)

The simulated results of the model given in [24] are shown
in Figures 1, 2, 5, and 6, and the results of our model
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Fig. 1. Vehicular density controlled by the model given in [1].

Fig. 2. Average velocity controlled by the model given in [1].

are shown in Figures 3, 4, 7, and 8. The comparison of
Figure 1 with 3 and 2 with 4 show that the perturbed
ACC traffic flow has a higher speed in entering into a
steady state. Compared with the original steady state,
the re-equilibrated steady velocity of ACC traffic flow is
about 56 km/h (Fig. 7), which is lower than that of the
manually driven traffic flow (which is near to 75 km/h)
(Fig. 5). The re-equilibrated steady vehicular densities of
the two models are all equal to the original values (35
vehicles/km) (Figs. 6 and 8).

Let ue denote the re-equilibrated steady velocity of the
perturbed ACC traffic flow. To investigate how ω and hd

affect ue, some theoretical numerical simulations are per-
formed, the results of which are shown in Figure 9. It can
be seen that as ω increases, ue decreases. The increase
of ω will increase the headway at which a vehicle (whose
velocity is relatively large) begins to decelerate (resulting
from the interaction of it and the preceding vehicle), fi-
nally causing the perturbed ACC traffic flow to develop

Fig. 3. The vehicular density of our model.

Fig. 4. The average velocity of our model.

into a steady state with low velocity. Also, ue may be
higher than the original value ce when ω is small enough
and satisfies ω > hd, as required by (26). For instance,
when ω = 1.01, τ = 0.6, hd = 1.0 or 0.8, then ue > ce.
From Figure 9, it can be seen that with the same ω and
τ , ue decreases with the improvement of hd. The reason is
likely that when ω increases, large head way time hd means
that the slow vehicles will bring more effect in slowing the
traffic flow down. Therefore, the fact that ACC goes into
effect when headways are inappropriately large will bring
low efficiency in traffic running, although the traffic stabil-
ity is improved. Only the tradeoff set in ACC parameters
can improve traffic running efficiency and stability, and
exhibit the good performance of ACC.
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Fig. 5. Vehicular velocity at x = 4 Km, controlled by the
model given in [1].

Fig. 6. Vehicular density at x = 4 Km, controlled by the model
given in [1].

Also, in Figure 9, it can be see that with τ = 0.6, in
almost all of the ranges of the parameters hd and ω, ue is
lower than that of the manually driven traffic flow, which
is about 75 km/h. This means that, in terms of the effi-
ciency of traffic flows, the ACC of the constant-headway
time policy is not so good compared to manually driving
instances [2]. So, replacing constant-headway time poli-
cies with other strategies for controlling traffic flows (e.g.
constant-headway distance policies, which do not make
the fast vehicles decelerate when their headways are too
large, or variable-headway time policies, which associate
the headway time of each vehicle with its instantaneous
velocity, response time and headway distance, etc.) may
be beneficial for preserving the running efficiency and sta-
bility of ACC traffic flows.

How does the proposed model behave when ve-
hicle density is perturbed? To illustrate this, let
V (x, 0)ρ(x, 0) = ceρe and ρ(x, 0) = ρe + 5

[
cosh−2((x−

5)/0.5 − cosh−2((x − 7)/0.5)
]
. The numerical simulations

shown in Figures 10–13 exhibit the same characteristics
shown in the case when only velocity is perturbed in (34).
With these numerical simulations, we follow that: for a ho-
mogeneous steady traffic flow where ρe = 35 vehicles/km,

Fig. 7. vehicular velocity at x = 4 Km, controlled by our
model.

Fig. 8. Vehicular density at x = 4 Km, controlled by our
model.
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Fig. 9. With different headway time hd, the curves of ue vs.
ω.

ce = 75 km/h, when small perturbations are imposed
upon ce or pe, if all vehicles are equipped with ACC,
the traffic flow develops into a steady state more quickly,
the steady vehicular density is about ρe, and the velocity
is higher or lower than ce, depending upon the parame-
ter ω introduced in (26), the headway time hd, and the
perturbations. Conversely, the traffic flow constituted by
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Fig. 10. The vehicular density controlled by the model given
in [1], α = 60, τ0 = 300 s.

Fig. 11. The average velocity controlled by the model given
in [1], α = 60, τ0 =300 s.

manually driven vehicles always comes back to the original
steady state more slowly.

6 Conclusion remarks

For the traffic flow constituted by adaptive cruise con-
trol vehicles, under the hypothesis that the one-vehicle
distribution function fits the Paveri-Fontana model re-
quirement, a reduced Paveri-Fontana equation considering
adaptive cruise control (ACC) effect is presented. By the
maximization of the specially defined information entropy,
relative to a certain reference homogeneous steady state,
a set of Navier-Stokes-like equations applicable to ACC
traffic flows is derived. Numerical simulations on a single

Fig. 12. The vehicular density of our model, τ = 60, hd =
1.0 s, ω = 1.2 s and τ0 = 60 s.

Fig. 13. The average velocity of our model, τ = 0.6, hd =
1.0 s, ω = 1.2 s and τ0 = 60 s.

circular lane indicate that, for a steady traffic flow, when
small perturbations are appended to the vehicle velocity
or density, less time is required for re-equilibration if all
vehicles are controlled by ACC. Whether the vehicles are
manually driven or controlled by ACC, the re-equilibrated
steady vehicular density always equals the original value;
the same is true for the re-equilibrated steady velocity for
manually driven traffic flows. For ACC traffic flows, with
the increase of the headway time hd (introduced in ACC)
and the pending parameter (adopted for solving the dis-
tribution function of the reference homogeneous steady
state), the headway distance, at which the adjacent vehi-
cles begin to interact, increases. This makes the relatively
fast vehicles begin to decelerate when they are fairly dis-
tant from their associated preceding ones, finally leading
the perturbed ACC traffic flow to stay in a steady state,
whose velocity may be lower or higher than the original
steady value depending upon hd, ω, and the perturbations.
Thus, an appropriate set of parameters is the founda-
tion for good ACC performance, while an inferior set will
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result in low traffic running efficiency, although traffic flow
stability is boosted.
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